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Abstract

The notion of eventual stability has been recently discussed. We extend this notion to
impulsive systems of differential equations. Our technique depends on Liapunov’s direct
method.
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1. Introduction

In recent years the mathematical theory of impulsive systems of differential
equations has been developed by a large number of mathematicians, see e.g.
Bainov and Simeonov [1,2], Lakshmikantham et al. [5], and Somoilenko and
Perestyuk [7]. Furthermore these systems are adequate mathematical models
for numerous processes and phenomena studied in biology, physics technol-
ogy, etc.

The main purpose of this paper is to extend the notion of eventual stability
to impulsive systems of differential equations which is discussed in [6] for
systems of ordinary differential equations. The motivation of this work is the
recent work of Kulev and Bainov [3]. The paper is organized as follows. In
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Section 2, we introduce some preliminary definitions and results which will be
used throughout the paper. In Section 3, we extend the notion of eventual
stability to impulsive system of differential equations.

2. Preliminaries

Let R}, be the s-dimensional Euclidean space with a suitable norm || - ||. Let
R =1[0,00). R}, = {x e R x| < H}.
Consider the system of differential equations with impulses

X =f(t,x)+g(t,y), t#ulxy), Ax‘t:r,'(x,y) = A,(x) + B.(»),

y/ h(tax7y)7 t 7é T,-(X,y), Ay|;:r,(x,y) = Ct(xay)>

where x e R, y e R", [ RT xR, > R, g2 R x RY — R, h: RT x R, x
Ry — R, 4R, — R, B R, = R, G Ry xRy — R, 10 R, x R —
RN

(2.1)

Ax|t:1'(x,y) = X(f + 0) - )C(t - O)? Ay‘t:r(x,y) = y(t + 0) - y(t - O)

Let # € S}{+, Xo € 93;’,, W € 9{1'3 Let x(t, to,Xo,yo), y(t, l‘o,Xo,yo) be solution of
the system (2.1), satisfying the initial conditions x(# + 0, #,xo,0) = Xo,
y(to + 0, t9,x0,10) = . The solution (x(¢), y(¢)) of the system (2.1) are piecewise
continuous functions with points of discontinuity of the first type in which they
are left continuous, i.e. at the moment ¢, when the integral curve of the solution
(x(2),»(¢)) meets the hypersurface

o, ={(t,x,y) € R" x R}, x R} 1 =1(x,»)}.

The following relations are satisfied:
x(t—0) = x(t),  Axl,_, = A(x(6)) + B.(v(1),
Wt = 0) = y(t), Ayl = Cx(t),y(t))
together with system (2.1). We consider the following system with impulses:
X =f(t,x), t#1(x0), Ax|,zr,<x,0) =A4,(x). (2.2)
Let
s;={(t,x) € R x R t=1,(x,0)}.

Definition 1. A function b(r) is said to belong to the class #" if a € C[R*, R"],
b(0) =0, and b(r) is strictly monotone increasing in r. Let 1(x,y) =0 for
(x,y) € Ry, x Ry,
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Following [4] we define the sets
G ={(t,x,y) € R" x R, x Ry: 1(x,p) <t <tlx,»)},
Q ={(t,x) e R" x N};: 11(x,0) <t < 7(x,0)}.

As in [3], we use the classes 77y and %" of piecewise continuous functions
which are analogue to Lyapunov functions.

Definition 2 [3]. We say that the function ¥V : R™ x R}, x R}, — RN}, x R},

belongs to the class 77 if the following conditions hold:

1. The function ¥ is continuous in | J;°, G; and is locally Lipschitzian with re-
spect to x and y in each of the sets G;.

2. V(t,0,0) =0 for t € R".

3. For each i = 1,2,... and for any point (#,xy,0) € o,, there exist the finite
limits

V(fo - vaoay0> = lim V(I»X,J/)a
(tx.3)—=(t0%0.30)
(tx,y)€G;
V(t0+07x0ay0) = lim V(t7x7y)a
(tx.p)—(tox0.00)
(txy)€Giy

and the equality V(¢ — 0,x0,) = V (to, X0, 0) holds.
4. For any point (¢,x,y) € g,, the following inequality holds:

V(t+0,x+4i(x) + Bi(y),y + Ci(x,9)) < V(1,x, ). (2.3)

Definition 3 [3]. We say that the function W: I x R}, — R}, belongs to the
class #"y if the following conditions hold:
1. The function W is continuous in [ J;* ©; and is locally Lipschitz with respect
to x in each of the sets Q;.
2. W(t,0) =0 for t € R".
3. There exist the finite limits
W(f() — O,XO) = lim W(t,x),

(tx)—(t0%0)
(tx)€Q;

W(lo + O,X()) = lim W(t,x),
(tx)—(t0.x0)
(tx)€Q;

and the equality W (z — 0,x0) = W (¢y,x,) holds.
4. For any point (¢,x) € s;, the following inequality holds:

W(t+0,x + A,(x)) < W(t,x). (2.4)
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Let V € 77, and x(¢), y(¢) be a solution of (2.1) for (¢,x,y) € |J;” G;. Fol-
lowing [4] we define

1
V{(t,x,y) = 1111;)1 g[V(t—l—s,x—i—s(f(Lx) +g(tﬂy))vy+Sh(t7xvy)) - V(tvxvy)]v

and
V(,Z.l)(tvxvy) :D+V(taxvY)v t # Ti(x, ),

where D"V (¢,x,y) is the upper right Dini derivative of the function V' (¢,x,y).

Analogously one can define the function W(’z_z) (t,x) for an arbitrary function
W e, for (¢,x) € J;” Q. The following definition is new and related with
that of [6].

Definition 4. The zero solution of system (2.1) is said to be eventually stable if
for all € >0, for all z, € R", there exist 1o > 0 and § = 5(t,¢) > 0 for all
(x0,30) € (N}, x N};) such that

llxo + yol| < & implies ||x(¢, t0,x0, %) + ¥(¢, 10, X0, 30)|| < €, =ty = 70,

Any eventual stability concepts can be similarly define.

Definition 5. We say conditions (A) hold if the following conditions are sat-
isfied:
(A;) The functions f(z,x), g(z,¥) and A(t,x,y) are continuous in their defi-
nition domains, f(¢,0) = g(¢,0) = 0 and h(¢,0,0) = 0 for t € R™.
(A;) There exists a constant L > 0 such that

h(t,x,y) <L, (t,x,y) € R" x R}, x RY.

(A;) There exists a continuous function P : [ — I such that P(0) = 0 and
gt I < P(llyll) for (£,x) € R* x R,

(A4) The functions 4,, B,, C, are continuous in their definition domains and
A4,(0) = B,(0) = C,(0,0) =0.

(As) If x e Ry, and y € Ry, then ||x +4,(x) + B,()|| < x| and ||y + e (x,
WI<ll i=1,2.

(A¢) The functions t;(x,y) are continuous and for (x,y) € R}, x R}, the
following relations hold:

0<t1(x,y) <2(x,y) <--- < tlim 7;(x,y) = oo uniformly in R}, x R}

and

inf 7,.(x,y)— sup (x,y)=0>0 i=12....

Ry xRy R xR

(A7) For each point (t9,x0,30) € K" x R}, x R, the solution x(¢,#,xo),
¥(t, t,x0,)0) of the system (2.1) is unique and defined in (¢, 00).
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(As) For each point (7,x) € R" x R}, the solution x(¢,1,xy) of system
(2.2) satisfying x(ty + 0,4,x) =xo is unique and exists for all
t € (t,00).

(Ag) The integral curve of each solution of system (2.1) meets each of the
hypersurfaces {o,} at most once.

3. Main results

In this section, we give a partial generalization of the work of Kulev and
Bainov [3].

Theorem 1. Assume that:
(Hy) Condition (A) holds.
(H,) There exist functions V € 4"y, a € A such that

allx +y[I <V (Exp)ll - (6xp) € RT x Ry x R,
(Hs)
Vo (t,x,y) <0 for (t,x,) EUG,
I

Then the zero solution of the system (2.1) is eventually stable.

Proof. Let 0 < e < H and # € R*. Assume that 7, <7, (x,y) for (z,x) € R}, x
R} Since 7 (¢,0,0) = 0 and from Definition 2, it follows that there exists a 6 =
0(ty,€) > 0. Thus it follows that

||X() +y0H <0 1mphes ||V(I() + O,Xo,yo)” < G(E).

Let xo € My, » € Ry, |xo+wl <6 and let x(t) =x(z,%,x0,30), () =
(¢, t0,x0,)0) be a solution of (2.1). From (2.3) and (H;) it follows that the
function ¥ (¢,x,y) is monotone decreasing in (¢, o). Then by (H,) we get

allx(@) + y(Ol < V{6, x,y) <V (to +0,x0,00) < ale), =1t =1,

for ¢ € (ty, 00). Therefore ||x(¢) + y(¢)|| < e. Hence the zero solution of system
(2.1) is eventually stable. [

Theorem 2. Let all conditions of Theorem 1 be satisfied except condition (H,)
being replaced by
(Ha)

allx +y|<V(t,x,y) <bllx+yl, abeA.

Then the zero solution of the system (2.1) is uniformly eventually stable.
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Proof. Since condition (H4) implies condition (H,), it follows from Theorem 1
that the zero solution of the system (2.1) is eventually stable. Thus for € > 0, let
6 =b"'0a(e)] be independent of ¢, for a,be A". Let xo € Ny, » € Ry,
[lxo 4+ 0]l < 6 and let x(¢) = x(¢, ty,x0,0), ¥(t) = y(¢,t0,%0,)0) be a solution of

2.1).
From (2.3) and (Hj;) it follows that the function ¥V (¢,x,y) is monotone de-
creasing in [fy, 00). Then by using (H4) we get

allx(r) + y(O)l| <V (£, x,5) <V (to 4 0,x0, 30) < bl|xo + 30|l < b(6) < afe).
Then

llx+y|| < e whenever |xo+ | < for =ty > 1.
Thus the zero solution of the system (2.1) is uniformly eventually stable. [
Theorem 3. Suppose that the assumptions of Theorem 1 are satisfied except

condition (Hs) being replaced by the condition
(Hs)

V(/2,1)(f7an’) < — |yl (t,x,) ER" xR}, xRy, ceA.

We further assume that
(Hg) There exist functions W € Wy and a; € A" such that

a|x|| < W (t,x), (t,x) € R" x Ry,

(H;) There exist functions W € Wy and ¢, € A" such that
VV(IZZ)(Z‘?)C)g _cl(W(tvx))7 (tvx) GUQU
1

(Hs)
W (t,x1) = W (t,x2) || < €l|x1 — x2|.

Then the zero solution of the system (2.1) is asymptotically eventually stable.

Proof. Since by Theorem 1, we conclude that the zero solution of the system
(2.1) is eventually stable. Then we can choose a number A = A(#y) > 0 such that
if

lIxo +0ll <A then |x+y|<H, ¢=t.

Now to prove that the zero solution of (2.1) is asymptotically eventually stable,
we must show that lim,_, ||x(¢, to, x0, 30) + (¢, fo, %0, 30)|| = O.

Firstly, we show that lim, ., ||y(¢,t,x0,0)|| = 0. Suppose that this is not
true. Then for some ¢, > 0 there exists a sequence {¢,} which tends to oo for
r — oo such that



A.A. Soliman | Appl. Math. Comput. 134 (2003) 445-457 451

€
1ol

If ; (i=1,2,...) are the moments when the integral curve of the solution
(x(#), y(¢)) meets the hypersurfaces g;, then for ¢ # ¢, by (A,) we obtain

& <y <IENs e [y(E)I = =€, r=12...

G101 = 0.0 <L

We shall prove that ||y(¢)|| = €/2 for t € [£, — (e0/2L),¢&,] =J,. Let 0<&,—
t < ¢ /2L. Integrating the above inequality from ¢ to &,, we get

- d €0
= de<L(é — 1)< 2.
| g -0<s

On the other hand, each interval J., » = 1,2,..., contains a finite number of
points {z}.
As in Theorem 1 of [3], we assume that these points are ¢, f,y1, . . ., t,,. Then

by (As) we obtain

I d tg d s+p t; d
< di= [ £ d < d
| ah@ia= [ fpmies Y [ Ll

i=s+1 -

¢ q
Gl

= [yl = @)1l

_|_

Therefore

¢ d
6o—\ly(t)||<|\y(é,-)||—IIy(t)||</ Elly(f)ll df<€—2°-

Thus we conclude that ||y(?)|| = /2.

If we choose a suitable subsequence of the sequence {&,} which we again
denoted by {¢&,}, we can assume that the intervals J, do not intersect one an-
other and #) < &, — (€/2L). Then from (Hs) we obtain

Vo (t,x(),y(t) < —c(€/2) (3.1)
in the intervals J. and

Vo (4, x(2),5(1)) <O

for the remaining values of 7 for which (7,x(7), (7)) € J;” G;. Integrating (2.1)
and using (2.3), we obtain

€

V(6x(E).(E) < V(0 +0x0,30) — e 2) (2)r = o0
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for » — oo which contradicts (Hy). Therefore
lim [[y(t .30, 0)]| = 0. (32)

Secondly, we prove that lim, .., ||x(z, %, X0, 0)|| = 0. To do this we shall prove
that w(¢) = W(t,x) — 0 for + — oo. Using (Hg), we get
Wi (t,x) S W, (8,x) +d|g(t )],
teRT, xeW),, yeRy, t#ulxy), i=12,...

Thus by (H;) and (A;), we have

Wa (t6x(0) < — (W (6,x(0) + dpllly@Il], ¢ # 7(x(2), »(2))- (3-3)

We set lim sup, . w(t) = o, lim inf,_, w(¢) = f. Then for an arbitrarily small
number p >0 we can find sequences ¢, > p, — oo for n — oo such that
w(p,) =+ u, wig,) =o—uand f+u<w(t) <a—pfor p, <t< g, Since
the function P is continuous, P(0) = 0 and lim,_ . ||y(¢)|| = 0, it follows that
lim, ., y(t) = 0. Thus there exists a positive integer v such that for n > v and
t = p, the following inequality holds:

Pyt < L HH

Then from (3.3) we have

ci(f+
14

for n = u and ¢ € (p,,q,), t # w:(x(¢),y(t)) which together with (2.4) yields

W(pa) = W(qn)-
Hence ff+ p > o — p, which contradicts the assumption that « > . This
shows that there exists the limit

lim W (¢,x(¢)) =y = 0.
t—00

Won(tx0) < —a(f+u) +d =0

Now suppose that y > 0. Then we can find a number 7 > 0 such that the
following inequalities hold:
Y

3 <W(t,x(1) <

»
2 b

PO < 70 (1)

for all + > T. Thus by (3.3), we obtain
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for t > T. Hence using (2.4) and integrating we obtain
1 /s
W (t,x(1)) = W(T.x(T)) = 5e1 (é)(z “T) = —c0 ast— oo,

which contradicts (Hg). Therefore
tll}n; ||x(t7 t07x07y0)|| =0.

Hence the zero solution of the system (2.1) is asymptotically eventually sta-
ble. O

Theorem 4. Let the conditions of Theorems 2 and 3 be satisfied. Moreover
suppose that
(Hy)
W(t,x) < bi(¢gy,x), (t,x) € RT xR, b eA.
Then the zero solution of the system (2.1) is uniformly asymptotically eventually
stable.

Proof. By Theorem 2 it follows that the zero solution of the system (2.1) is
uniformly eventually stable. Therefore for any 0 < e < M, there exists 0 = d(¢)
such that

|Ix +v|| < e whenever ||xo + 3l <8, > t.
Going through as in [3] and Theorem 2, we choose d; = d;(¢) > 0 such that
d1(€) <1d(e) and
1 1
P(s) <ﬁc1 (a1<§5>> for 0 <s <0y, (3.4)

where /¢ is Lipschitz constant for the function W. Moreover let 7} = Ti(e) > 0
and 7> = T»(€) > 0 such that

b(M) — a(361)
T _ = .
1(6) > C(%él) I’ (3 5)
2[b1(M) — ai(301)]
Tr(e) > 3.6
(0> = T (36)
Let the positive integer v be such that
d1c(to
b(H) — (v—1) ‘CZ(ZL ), (3.7)

Let 1 € “R+’ ||)C0 +y0H < ¢ and ()C(l),y(l)) = (X(t, thxovyO)vy(ta tO,xOvyO)) be a
solution of (2.1). Assume that for all # € [t, o + 7], the inequality ||y(¢)|| = 10,
holds. Then from (Hs), we obtain
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1
Vo (t:x,) < = elly(@)] < _0(551)
te o+ T, t#u(x(),y() i=1,2,... (3.8)

By integrating (3.8) on [t, ) + T;] and making use of (2.3), (Hy4), and (3.5) we
get

1
o 30) <alito + 74300+ 1)
< V(fo + Tl,x(lo + Tl),y(to —+ T])) from (H4)

1 . .
<V (to+0,x0,30) — 0(551) Ty  from integrating (3.8)

< bllxo + ol — c< 51>T1 from (H4) and (2.3)

which is a contradiction. Thus there exists &,, tp < &, < fy + T}, such that

1 . 1
E <501 ie, [ENI< 50 (3.9)
2 2

To prove that for any ¢ € [¢,1+ T} + T3], the inequality ||y(z)|| < 6; <30
holds, then there exists & € [£,4 + Tj 4 T3] such that [|x(&)| < 16. Suppose
this is false, then by (Hg), (H7), and (A;), in view of (3.4) we obtain

, 1 1
VV(Z.I)(t’x) < 7§C1 ((1] <25>>

for t € [&1, 00+ T + Ta], t # :(x(2),»(2)). (3.10)

By integrating (3.10) on [¢,% + I + T3] and making use of (Hg), (2.4), (Hy)
and (3.6), and going through as in the proof of (3.9), thus there exists
& € &, 10 + T + D) such that

1 1 1
(&)l <50 then [x(&) +¥(&)] < 56+ <.

Now from uniform eventual stability it follows that if

Ix(®) +y(8)]| < e fort>¢&,
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holds, then
Ix(e) + y()| < € for >ty + Ti(e) + Ta(e).

Now, let us suppose that there exists &; € [£y, 7 + T} + T3] for which ||y(&)|| =
0y and let & =inf{r € [&, 60+ T1 + 1] : ||y(®)|| = 61} Then ||y(&5)|| <6, and
Ily(6)|| < o for t € [&,&]. If ||y(&s)|| < d1, then from the definition of &5, it
follows that |[y(&s+0)|| = 1. Hence &5 = 1,(x(&5),p(&s)) for some positive
integer r. But then from (As), we obtain that

17(Es + O) I = [1¥(Es) + Crx(&s), y(EI < [ (Es) | < o,

which is a contradiction. Thus

(&)l =61, & # ul(x(&s),p(Ss)), i=1,2,...

Now using (As), we conclude that there exists &y, & < & < & <ty + T1 + Do,
such that &, # 7,(x(&),»(&)), i=1,2,...,

1 1
VEll =501 and 501 <[ly()l] < o1 for 7€ (& &)

by (A,), it follows that

S Ipl<L for 1 w0 5(0), i=1.2....

As in the proof of Theorem 3, we obtain that & — &, = 6, /2L. Thus by (Hs), it
follows that

Vi < - bl — (30
for t € [&y, &), ¢t # wu(x(e),»(2), i=1,2,... (3.11)

Also by integrating (3.11) and making use of (2.3), we obtain

P (Esx(E)H(E) < V(En(E e — ¢ 301 ) G = &)

o
2L°
Thus we have proved that if ||xy + || < 0, the following two cases are possible:

L [lx(@) +y(@)|l <€, t =t + T + Tr, o1
2. there exist &, &s, ty < &y < &5 <ty + T; + T», such that

o
2L

< lanrla)x(E) - ¢ 30

P (Esix(Es).2(E5)) < V(& x(E0), (&) - (%5
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In the same way we prove that one of the following two possibilities takes
place:

L [l(e) +9(0ll < € ¢ >ty +2[Ty(€) + To(e)], or

2. there exist &, &g, to+ T + Th < & < &g < 1o + 2[Ty + T3], such that

o1
2L

By induction we can prove that if ||x(¢) + y(¢)|| < J, we have one of the fol-

lowing two cases:

L x(0) +y(0)|l <€ t =to+ (n— 1)[Ti(e) + Tr(e)] or

2. there exist &5, 1,85y, fo+ (n— DT+ D] <&, < &5y <to+n[T1 + T,
such that

P (G (G0) 3 (En) < V(&) 0() - 50

1 0
P (GG /) € V(G 113(Es-)o0(Gs 1)) — e 500) 31

If for any positive integer n >v the second one holds, then by
&ty < to + (n = 1)[T1 + T»] < &5,y Thus from (Hs) and (3.7) we obtain

d1
)ar

d1
)3

1 20,
< _ _
<V (Espyny—1,X(Es(u—1y-1), (& (5v-1)-1)) 0(2 51> 3L

1
V(éS\wx(iSv)vy(éSv)) < V(éS\rfl7x(£5v71)7y(€5v71)) - C<§5l

1
SV (Espym1), X(Es-1))s Y(Esp-1))) — C<551

N

SV (&4, x(&4),¥(84)) — C(;&) %

1 y—1
< —c| 20)— .
<b(M) 0(25) 5 01 <0
(3.12)

Then
[Ixo +30l| < & implies []x(r) +y())[| <€, =t + (n = 1D[Ti(€) + Ta(e)].
This completes the proof of Theorem 4. [
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