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Abstract

The notion of eventual stability has been recently discussed.We extend this notion to

impulsive systems of differential equations. Our technique depends on Liapunov’s direct

method.
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1. Introduction

In recent years the mathematical theory of impulsive systems of differential
equations has been developed by a large number of mathematicians, see e.g.
Bainov and Simeonov [1,2], Lakshmikantham et al. [5], and Somoilenko and
Perestyuk [7]. Furthermore these systems are adequate mathematical models
for numerous processes and phenomena studied in biology, physics technol-
ogy, etc.

The main purpose of this paper is to extend the notion of eventual stability
to impulsive systems of differential equations which is discussed in [6] for
systems of ordinary differential equations. The motivation of this work is the
recent work of Kulev and Bainov [3]. The paper is organized as follows. In
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Section 2, we introduce some preliminary definitions and results which will be
used throughout the paper. In Section 3, we extend the notion of eventual
stability to impulsive system of differential equations.

2. Preliminaries

Let Rs
H be the s-dimensional Euclidean space with a suitable norm k � k. Let

Rþ ¼ ½0;1Þ. Rs
H ¼ fx 2 Rs: kxk < Hg.

Consider the system of differential equations with impulses

x0 ¼ f ðt; xÞ þ gðt; yÞ; t 6¼ siðx; yÞ; Dxjt¼siðx;yÞ ¼ AtðxÞ þ BtðyÞ;
y0 ¼ hðt; x; yÞ; t 6¼ siðx; yÞ; Dyjt¼siðx;yÞ ¼ Ctðx; yÞ;

ð2:1Þ

where x 2 Rn, y 2 Rm, f : Rþ � Rn
H ! Rn, g : Rþ � Rm

H ! Rm, h : Rþ � Rn
H �

Rm
H ! Rm, At: Rn

H ! Rn, Bt : Rm
H ! Rm, Ct : Rn

H � Rm
H ! Rm, si : Rn

H � Rm
H !

R1.

Dxjt¼sðx;yÞ ¼ xðt þ 0Þ � xðt � 0Þ; Dyjt¼sðx;yÞ ¼ yðt þ 0Þ � yðt � 0Þ:

Let t0 2 Rþ, x0 2 Rn
H , y0 2 Rm

H . Let xðt; t0; x0; y0Þ, yðt; t0; x0; y0Þ be solution of
the system (2.1), satisfying the initial conditions xðt0 þ 0; t0; x0; y0Þ ¼ x0,
yðt0 þ 0; t0; x0; y0Þ ¼ y0. The solution ðxðtÞ; yðtÞÞ of the system (2.1) are piecewise
continuous functions with points of discontinuity of the first type in which they
are left continuous, i.e. at the moment ti when the integral curve of the solution
ðxðtÞ; yðtÞÞ meets the hypersurface

rt ¼ fðt; x; yÞ 2 Rþ � Rn
H � Rm

H : t ¼ siðx; yÞg:

The following relations are satisfied:

xðti � 0Þ ¼ xðtiÞ; Dxjt¼ti ¼ AtðxðtiÞÞ þ BtðyðtiÞÞ;
yðti � 0Þ ¼ yðtiÞ; Dyjt¼ti ¼ CtðxðtiÞ; yðtiÞÞ

together with system (2.1). We consider the following system with impulses:

x0 ¼ f ðt; xÞ; t 6¼ siðx; 0Þ; Dxjt¼siðx;0Þ ¼ AtðxÞ: ð2:2Þ

Let

st ¼ fðt; xÞ 2 Rþ � Rn
H : t ¼ siðx; 0Þg:

Definition 1. A function bðrÞ is said to belong to the class K if a 2 C½Rþ;Rþ�;
bð0Þ ¼ 0, and bðrÞ is strictly monotone increasing in r. Let s0ðx; yÞ ¼ 0 for
ðx; yÞ 2 Rn

H � Rm
H .
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Following [4] we define the sets

Gi ¼ fðt; x; yÞ 2 Rþ � Rn
H � Rm

H : si�1ðx; yÞ < t < siðx; yÞg;

Xi ¼ fðt; xÞ 2 Rþ � Rn
H : si�1ðx; 0Þ < t < siðx; 0Þg:

As in [3], we use the classes V0 and W0 of piecewise continuous functions
which are analogue to Lyapunov functions.

Definition 2 [3]. We say that the function V : Rþ � Rn
H � Rm

H ! Rn
H � Rm

H
belongs to the class V0 if the following conditions hold:
1. The function V is continuous in

S1
i¼1 Gi and is locally Lipschitzian with re-

spect to x and y in each of the sets Gi.
2. V ðt; 0; 0Þ ¼ 0 for t 2 Rþ.
3. For each i ¼ 1; 2; . . . and for any point ðt0; x0; y0Þ 2 rt, there exist the finite

limits

V ðt0 � 0; x0; y0Þ ¼ lim
ðt;x;yÞ!ðt0;x0;y0Þ

ðt;x;yÞ2Gi

V ðt; x; yÞ;

V ðt0 þ 0; x0; y0Þ ¼ lim
ðt;x;yÞ!ðt0;x0;y0Þ

ðt;x;yÞ2Giþ1

V ðt; x; yÞ;

and the equality V ðt0 � 0; x0; y0Þ ¼ V ðt0; x0; y0Þ holds.
4. For any point ðt; x; yÞ 2 rt, the following inequality holds:

V ðt þ 0; xþ AtðxÞ þ BtðyÞ; y þ Ctðx; yÞÞ6 V ðt; x; yÞ: ð2:3Þ

Definition 3 [3]. We say that the function W: I � Rn
H ! Rn

H belongs to the
class W0 if the following conditions hold:
1. The function W is continuous in

S1
1 Xi and is locally Lipschitz with respect

to x in each of the sets Xi.
2. W ðt; 0Þ ¼ 0 for t 2 Rþ.
3. There exist the finite limits

W ðt0 � 0; x0Þ ¼ lim
ðt;xÞ!ðt0;x0Þ

ðt;xÞ2Xi

W ðt; xÞ;

W ðt0 þ 0; x0Þ ¼ lim
ðt;xÞ!ðt0;x0Þ

ðt;xÞ2Xi

W ðt; xÞ;

and the equality W ðt0 � 0; x0Þ ¼ W ðt0; x0Þ holds.
4. For any point ðt; xÞ 2 st, the following inequality holds:

W ðt þ 0; xþ AtðxÞÞ6W ðt; xÞ: ð2:4Þ
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Let V 2 V0, and xðtÞ, yðtÞ be a solution of (2.1) for ðt; x; yÞ 2
S1

1 Gi. Fol-
lowing [4] we define

V 0
1 ðt; x; yÞ ¼ lim

s!0

1

5
½V ðtþ s; xþ sðf ðt; xÞ þ gðt; yÞÞ; y þ shðt; x; yÞÞ � V ðt; x; yÞ�;

and

V 0
ð2:1Þðt; x; yÞ ¼ DþV ðt; x; yÞ; t 6¼ siðx; yÞ;

where DþV ðt; x; yÞ is the upper right Dini derivative of the function V ðt; x; yÞ.
Analogously one can define the function W 0

ð2:2Þðt; xÞ for an arbitrary function
W 2 W0 for ðt; xÞ 2

S1
1 Xi. The following definition is new and related with

that of [6].

Definition 4. The zero solution of system (2.1) is said to be eventually stable if
for all � > 0, for all t0 2 Rþ, there exist s0 > 0 and d ¼ dðt0; �Þ > 0 for all
ðx0; y0Þ 2 ðRn

H � Rm
H Þ such that

kx0 þ y0k < d implies kxðt; t0; x0; y0Þ þ yðt; t0; x0; y0Þk < �; tP t0 P s0;

Any eventual stability concepts can be similarly define.

Definition 5. We say conditions (A) hold if the following conditions are sat-
isfied:

ðA1Þ The functions f ðt; xÞ, gðt; yÞ and hðt; x; yÞ are continuous in their defi-
nition domains, f ðt; 0Þ ¼ gðt; 0Þ ¼ 0 and hðt; 0; 0Þ ¼ 0 for t 2 Rþ.

ðA2Þ There exists a constant L > 0 such that

hðt; x; yÞ6 L; ðt; x; yÞ 2 Rþ � Rn
H � Rm

H :

ðA3Þ There exists a continuous function P : I ! I such that Pð0Þ ¼ 0 and
kgðt; yÞk6 PðkykÞ for ðt; xÞ 2 Rþ � Rn

H .
ðA4Þ The functions At; Bt; Ct are continuous in their definition domains and

Atð0Þ ¼ Btð0Þ ¼ Ctð0; 0Þ ¼ 0:
ðA5Þ If x 2 Rn

H and y 2 Rn
H , then kxþ AtðxÞ þ BtðyÞk6 kxk and ky þ ctðx;

yÞk6 kyk, i ¼ 1; 2.
ðA6Þ The functions siðx; yÞ are continuous and for ðx; yÞ 2 Rn

H � Rm
H , the

following relations hold:

0 < s1ðx; yÞ < s2ðx; yÞ < � � � < lim
t!1

siðx; yÞ ¼ 1 uniformly in Rn
H � Rm

H

and

inf
Rn

H�Rm
H

siþ1ðx; yÞ � sup
Rn

H�Rm
H

siðx; yÞP h > 0; i ¼ 1; 2; . . . :

ðA7Þ For each point ðt0; x0; y0Þ 2 Rþ � Rn
H � Rm

H , the solution xðt; t0; x0Þ,
yðt; t0; x0; y0Þ of the system (2.1) is unique and defined in ðt0;1Þ.
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ðA8Þ For each point ðt0; x0Þ 2 Rþ � Rn
H , the solution xðt; t0; x0Þ of system

(2.2) satisfying xðt0 þ 0; t0; x0Þ ¼ x0 is unique and exists for all
t 2 ðt0;1Þ.

ðA9Þ The integral curve of each solution of system (2.1) meets each of the
hypersurfaces frtg at most once.

3. Main results

In this section, we give a partial generalization of the work of Kulev and
Bainov [3].

Theorem 1. Assume that:
ðH1Þ Condition (A) holds.
ðH2Þ There exist functions V 2 V0, a 2 K such that

akxþ yk6 kV ðt; x; yÞk; ðt; x; yÞ 2 Rþ � Rn
H � Rm

H :

ðH3Þ

V 0
ð2:1Þðt; x; yÞ6 0 for ðt; x; yÞ 2

[1
1

Gi:

Then the zero solution of the system (2.1) is eventually stable.

Proof. Let 0 < � < H and t0 2 Rþ. Assume that t0 6 s1ðx; yÞ for ðt; xÞ 2 Rn
H�

Rm
H . Since V ðt; 0; 0Þ ¼ 0 and from Definition 2, it follows that there exists a d ¼

dðt0; �Þ > 0. Thus it follows that

kx0 þ y0k < d implies kV ðt0 þ 0; x0; y0Þk < að�Þ:

Let x0 2 Rn
H , y0 2 Rm

H , kx0 þ y0k < d and let xðtÞ ¼ xðt; t0; x0; y0Þ, yðtÞ ¼
yðt; t0; x0; y0Þ be a solution of (2.1). From (2.3) and ðH3Þ it follows that the
function V ðt; x; yÞ is monotone decreasing in ðt0;1Þ. Then by ðH2Þ we get

akxðtÞ þ yðtÞk < V ðt; x; yÞ6 V ðt0 þ 0; x0; y0Þ < að�Þ; tP t0 P s0;

for t 2 ðt0;1Þ. Therefore kxðtÞ þ yðtÞk < �. Hence the zero solution of system
(2.1) is eventually stable. �

Theorem 2. Let all conditions of Theorem 1 be satisfied except condition ðH2Þ
being replaced by

ðH4Þ
akxþ yk6 V ðt; x; yÞ6 bkxþ yk; a; b 2 K:

Then the zero solution of the system (2.1) is uniformly eventually stable.
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Proof. Since condition ðH4Þ implies condition ðH2Þ, it follows from Theorem 1
that the zero solution of the system (2.1) is eventually stable. Thus for � > 0, let
d ¼ b�1½að�Þ� be independent of t0 for a; b 2 K. Let x0 2 Rn

H , y0 2 Rm
H ,

kx0 þ y0k < d and let xðtÞ ¼ xðt; t0; x0; y0Þ, yðtÞ ¼ yðt; t0; x0; y0Þ be a solution of
(2.1).

From (2.3) and ðH3Þ it follows that the function V ðt; x; yÞ is monotone de-
creasing in ½t0;1Þ. Then by using ðH4Þ we get

akxðtÞ þ yðtÞk6 V ðt; x; yÞ6 V ðt0 þ 0; x0; y0Þ6 bkx0 þ y0k < bðdÞ < að�Þ:

Then

kxþ yk < � whenever kx0 þ y0k < d for tP t0 P s0:

Thus the zero solution of the system (2.1) is uniformly eventually stable. �

Theorem 3. Suppose that the assumptions of Theorem 1 are satisfied except
condition ðH3Þ being replaced by the condition

ðH5Þ

V 0
ð2:1Þðt; x; yÞ6 � ckyk ðt; x; yÞ 2 Rþ � Rn

H � Rm
H ; c 2 K:

We further assume that
ðH6Þ There exist functions W 2 W0 and a1 2 K such that

a1kxk6W ðt; xÞ; ðt; xÞ 2 Rþ � Rn
H :

ðH7Þ There exist functions W 2 W0 and c1 2 K such that

W 0
ð2:2Þðt; xÞ6 � c1ðW ðt; xÞÞ; ðt; xÞ 2

[1
1

Xi;

ðH8Þ
kW ðt; x1Þ � W ðt; x2Þk6 ‘kx1 � x2k:

Then the zero solution of the system (2.1) is asymptotically eventually stable.

Proof. Since by Theorem 1, we conclude that the zero solution of the system
(2.1) is eventually stable. Then we can choose a number k ¼ kðt0Þ > 0 such that
if

kx0 þ y0k < k then kxþ yk < H ; tP t0:

Now to prove that the zero solution of (2.1) is asymptotically eventually stable,
we must show that limt!1 kxðt; t0; x0; y0Þ þ yðt; t0; x0; y0Þk ¼ 0.

Firstly, we show that limt!1 kyðt; t0; x0; y0Þk ¼ 0. Suppose that this is not
true. Then for some �0 > 0 there exists a sequence fnrg which tends to 1 for
r ! 1 such that
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��0 6 kyðnrÞk6 kyðnrÞk; i:e: kyðnrÞkP
��0

k/0k
¼ �0; r ¼ 1; 2; . . .

If ti ði ¼ 1; 2; . . .Þ are the moments when the integral curve of the solution
ðxðtÞ; yðtÞÞ meets the hypersurfaces rt, then for t 6¼ ti by ðA2Þ we obtain

d

dt
kyðtÞk

����
����6 ky 0ðtÞk ¼ khðt; xðtÞ; yðtÞÞk6 L:

We shall prove that kyðtÞkP �0=2 for t 2 ½nr � ð�0=2LÞ; nr� ¼ Jr. Let 06 nr�
t6 �0=2L. Integrating the above inequality from t to nr, we get

Z nr

t

d

dt
kyðsÞk ds6 Lðnr � tÞ6 �0

2
:

On the other hand, each interval Jr, r ¼ 1; 2; . . . ; contains a finite number of
points ftsg.

As in Theorem 1 of [3], we assume that these points are ts; tsþ1; . . . ; tsþp: Then
by ðA5Þ we obtain

Z nr

t

d

ds
kyðsÞk ds ¼

Z ts

t

d

ds
kyðsÞk ds þ

Xsþp

i¼sþ1

Z ti

ti�1

d

ds
kyðsÞk ds

þ
Z nr

tsþp

d

ds
kyðsÞk ds

P kyðnrÞk � kyðtÞk:

Therefore

�0 � kyðtÞk6 kyðnrÞk � kyðtÞk6
Z nr

t

d

ds
kyðsÞk ds6

�0
2
:

Thus we conclude that kyðtÞkP �0=2.
If we choose a suitable subsequence of the sequence fnrg which we again

denoted by fnrg, we can assume that the intervals Jr do not intersect one an-
other and t0 < nr � ð�0=2LÞ. Then from ðH5Þ we obtain

V 0
ð2:1Þðt; xðtÞ; yðtÞÞ6 � cð�=2Þ ð3:1Þ

in the intervals Jr and

Vð2:1Þðt; xðtÞ; yðtÞÞ6 0

for the remaining values of t for which ðt; xðtÞ; yðtÞÞ 2
S1

1 Gi: Integrating (2.1)
and using (2.3), we obtain

V ðnr; xðnrÞ; yðnrÞÞ6 V ðt0 þ 0; x0; y0Þ � c
�0
2

� � �0
L

� �
r ! �1

A.A. Soliman / Appl. Math. Comput. 134 (2003) 445–457 451



for r ! 1 which contradicts ðH4Þ. Therefore
lim
t!1

kyðt; t0; x0; y0Þk ¼ 0: ð3:2Þ

Secondly, we prove that limt!1 kxðt; t0; x0; y0Þk ¼ 0. To do this we shall prove
that wðtÞ ¼ W ðt; xÞ ! 0 for t ! 1. Using ðH8Þ, we get

W 0
ð2:1Þðt; xÞ6W 0

ð2:2Þðt; xÞ þ dkgðt; yÞk;
t 2 Rþ; x 2 Rn

H ; y 2 Rm
H ; t 6¼ siðx; yÞ; i ¼ 1; 2; . . .

Thus by ðH7Þ and ðA3Þ, we have

W 0
ð2:1Þðt; xðtÞÞ6 � c1ðW ðt; xðtÞÞÞ þ dp½kyðtÞk�; t 6¼ siðxðtÞ; yðtÞÞ: ð3:3Þ

We set lim supt!1 wðtÞ ¼ a, lim inf t!1 wðtÞ ¼ b. Then for an arbitrarily small
number l > 0 we can find sequences qn > pn ! 1 for n ! 1 such that
wðpnÞ ¼ b þ l, wðqnÞ ¼ a � l and b þ l < wðtÞ < a � l for pn < t < qn. Since
the function P is continuous, P ð0Þ ¼ 0 and limt!1 kyðtÞk ¼ 0, it follows that
limt!1 yðtÞ ¼ 0. Thus there exists a positive integer m such that for nP m and
tP pn the following inequality holds:

PðkyðtÞkÞ6 c1ðb þ lÞ
‘

:

Then from (3.3) we have

W 0
ð2:1Þðt; xðtÞÞ6 � c1ðb þ lÞ þ d

c1ðb þ lÞ
‘

¼ 0

for nP l and t 2 ðpn; qnÞ, t 6¼ siðxðtÞ; yðtÞÞ which together with (2.4) yields
W ðpnÞPW ðqnÞ.

Hence b þ lP a � l, which contradicts the assumption that a > b. This
shows that there exists the limit

lim
t!1

W ðt; xðtÞÞ ¼ cP 0:

Now suppose that c > 0. Then we can find a number T > 0 such that the
following inequalities hold:

c
2
6W ðt; xðtÞÞ6 3c

2
;

PðkyðtÞkÞ6 1

2d
c1

c
2

� �

for all tP T . Thus by (3.3), we obtain

W 0
ð2:1Þðt; xðtÞÞ6 � 1

2
c1

c
2

� �
< 0
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for tP T . Hence using (2.4) and integrating we obtain

W ðt; xðtÞÞ ¼ W ðT ; xðT ÞÞ � 1

2
c1

c
2

� �
ðt � T Þ ! �1 as t ! 1;

which contradicts ðH6Þ. Therefore
lim
t!1

kxðt; t0; x0; y0Þk ¼ 0:

Hence the zero solution of the system (2.1) is asymptotically eventually sta-
ble. �

Theorem 4. Let the conditions of Theorems 2 and 3 be satisfied. Moreover
suppose that

ðH9Þ
W ðt; xÞ6 b1ð/0; xÞ; ðt; xÞ 2 Rþ � Rn

H ; b1 2 K:

Then the zero solution of the system (2.1) is uniformly asymptotically eventually
stable.

Proof. By Theorem 2 it follows that the zero solution of the system (2.1) is
uniformly eventually stable. Therefore for any 0 < �6M ; there exists d ¼ dð�Þ
such that

kxþ yk < � whenever kx0 þ y0k < d; t > t0:

Going through as in [3] and Theorem 2, we choose d1 ¼ d1ð�Þ > 0 such that
d1ð�Þ < 1

2
dð�Þ and

PðsÞ < 1

2d
c1 a1

1

2
d

� 	� 	
for 06 s6 d1; ð3:4Þ

where ‘ is Lipschitz constant for the function W. Moreover let T1 ¼ T1ð�Þ > 0
and T2 ¼ T2ð�Þ > 0 such that

T1ð�Þ >
bðMÞ � að1

2
d1Þ

cð1
2
d1Þ

; ð3:5Þ

T2ð�Þ >
2½b1ðMÞ � a1ð12 d1Þ�

c1ða1 1
2
d1Þ

: ð3:6Þ

Let the positive integer m be such that

bðHÞ � ðm � 1Þ
d1cð12 d1Þ

2L
< 0: ð3:7Þ

Let t0 2 Rþ, kx0 þ y0k < d and ðxðtÞ; yðtÞÞ ¼ ðxðt; t0; x0; y0Þ; yðt; t0; x0; y0ÞÞ be a
solution of (2.1). Assume that for all t 2 ½t0; t0 þ T1�, the inequality kyðtÞkP 1

2
d1

holds. Then from ðH5Þ, we obtain
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V 0
ð2:1Þðt; x; yÞ6 � ckyðtÞk6 � c

1

2
d1

� 	
;

t 2 ½t0; t0 þ T1�; t 6¼ siðxðtÞ; yðtÞÞ i ¼ 1; 2; . . . ð3:8Þ

By integrating (3.8) on ½t0; t0 þ T1� and making use of (2.3), ðH4Þ, and (3.5) we
get

a
1

2
d1

� 	
6 akxðt0 þ T1Þ þ yðt0 þ T1Þk

6 V ðt0 þ T1; xðt0 þ T1Þ; yðt0 þ T1ÞÞ from ðH4Þ

6 V ðt0 þ 0; x0; y0Þ � c
1

2
d1

� 	
T1 from integrating ð3:8Þ

6 bkx0 þ y0k � c
1

2
d1

� 	
T1 from ðH4Þ and ð2:3Þ

6 bðdÞ � c
1

2
d1

� 	
T1

6 bðMÞ � c
1

2
d1

� 	
bðMÞ � að1

2
d1Þ

cð1
2
d1Þ

from ð3:5Þ

¼ a
1

2
d1

� 	
;

which is a contradiction. Thus there exists n1, t0 < n1 < t0 þ T1, such that

kyðn1Þk <
1

2
d1; i:e:; kyðn1Þk6

1

2
d1: ð3:9Þ

To prove that for any t 2 ½n1; t0 þ T1 þ T2�, the inequality kyðtÞk < d1 <
1
2
d

holds, then there exists n2 2 ½n1; t0 þ T1 þ T2� such that kxðn2Þk < 1
2
d. Suppose

this is false, then by ðH6Þ, ðH7Þ, and ðA3Þ, in view of (3.4) we obtain

W 0
ð2:1Þðt; xÞ6 � 1

2
c1 a1

1

2
d

� 	� 	

for t 2 ½n1; t0 þ T1 þ T2�; t 6¼ siðxðtÞ; yðtÞÞ: ð3:10Þ

By integrating (3.10) on ½n1; t0 þ T1 þ T2� and making use of ðH6Þ, (2.4), ðH9Þ
and (3.6), and going through as in the proof of (3.9), thus there exists
n2 2 ½n1; t0 þ T1 þ T2� such that

kxðn2Þk <
1

2
d then kxðn2Þ þ yðn2Þk <

1

2
d þ 1

2
d < d:

Now from uniform eventual stability it follows that if

kxðtÞ þ yðtÞk < � for t > n2
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holds, then

kxðtÞ þ yðtÞk < � for t > t0 þ T1ð�Þ þ T2ð�Þ:

Now, let us suppose that there exists n3 2 ½n1; t0 þ T1 þ T2� for which kyðn3ÞkP
d1 and let n5 ¼ infft 2 ½n1; t0 þ T1 þ T2� : kyðtÞkP d1g. Then kyðn5Þk6 d1 and
kyðtÞk < d for t 2 ½n1; n5�. If kyðn5Þk < d1, then from the definition of n5, it
follows that kyðn5 þ 0ÞkP d1. Hence n5 ¼ srðxðn5Þ; yðn5ÞÞ for some positive
integer r. But then from ðA5Þ, we obtain that

kyðn5 þ 0Þk ¼ kyðn5Þ þ Crðxðn5Þ; yðn5ÞÞk6 kyðn5Þk < d1;

which is a contradiction. Thus

kyðn5Þk ¼ d1; n5 6¼ siðxðn5Þ; yðn5ÞÞ; i ¼ 1; 2; . . .

Now using ðA5Þ, we conclude that there exists n4, n1 < n4 < n5 < t0 þ T1 þ T2,
such that n4 6¼ siðxðn4Þ; yðn4ÞÞ; i ¼ 1; 2; . . .,

kyðn4Þk ¼ 1

2
d1 and

1

2
d1 < kyðtÞk < d1 for t 2 ðn4; n5Þ

by ðA2Þ, it follows that

d

dt
kyðtÞk6L for t 6¼ siðxðtÞ; yðtÞÞ; i ¼ 1; 2; . . .

As in the proof of Theorem 3, we obtain that n5 � n4 P d1=2L. Thus by ðH5Þ, it
follows that

V 0ðt; x; yÞ6 � ckyk6 � c
1

2
d1

� 	

for t 2 ½n4; n5�; t 6¼ siðxðtÞ; yðtÞÞ; i ¼ 1; 2; . . . ð3:11Þ

Also by integrating (3.11) and making use of (2.3), we obtain

V ðn5; xðn5Þ; yðn5ÞÞ6 V ðn4; xðn4Þ; yðn4ÞÞ � c
1

2
d1

� 	
ðn4 � n5Þ

6 V ðn4; xðn4Þ; yðn4ÞÞ � c
1

2
d1

� 	
d1

2L
:

Thus we have proved that if kx0 þ y0k < d, the following two cases are possible:
1. kxðtÞ þ yðtÞk < �; tP t0 þ T1 þ T2, or
2. there exist n4; n5, t0 < n4 < n5 < t0 þ T1 þ T2, such that

V ðn5; xðn5Þ; yðn5ÞÞ6 V ðn4; xðn4Þ; yðn4ÞÞ � c
1

2
d1

� 	
d1

2L
:
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In the same way we prove that one of the following two possibilities takes
place:
1. kxðtÞ þ yðtÞk < �; tP t0 þ 2½T1ð�Þ þ T2ð�Þ�, or
2. there exist n9; n10, t0 þ T1 þ T2 < n9 < n10 < t0 þ 2½T1 þ T2�, such that

V ðn10; xðn10Þ; yðn10ÞÞ6 V ðn9; xðn9Þ; yðn9ÞÞ � c
1

2
d1

� 	
d1

2L
:

By induction we can prove that if kxðtÞ þ yðtÞk < d, we have one of the fol-
lowing two cases:
1. kxðtÞ þ yðtÞk < �; tP t0 þ ðn� 1Þ½T1ð�Þ þ T2ð�Þ� or
2. there exist n5n�1; n5n, t0 þ ðn� 1Þ½T1 þ T2� < n5n�1 < n5n < t0 þ n½T1 þ T2�,

such that

V ðn5n; xðn5nÞ; yðn5nÞÞ6 V ðn5n�1; xðn5n�1Þ; yðn5n�1ÞÞ � c
1

2
d1

� 	
d1

2L
:

If for any positive integer nP m the second one holds, then by
n5ðn�1Þ < t0 þ ðn� 1Þ½T1 þ T2� < n5n�1. Thus from ðH5Þ and (3.7) we obtain

V ðn5m; xðn5mÞ; yðn5mÞÞ6 V ðn5m�1; xðn5m�1Þ; yðn5m�1ÞÞ � c
1

2
d1

� 	
d1

2L

6 V ðn5ðm�1Þ; xðn5ðm�1ÞÞ; yðn5ðm�1ÞÞÞ � c
1

2
d1

� 	
d1

2L

6 V ðn5ðm�1Þ�1; xðn5ðm�1Þ�1Þ; yðnð5m�1Þ�1ÞÞ � c
1

2
d1

� 	
2d1

2L

6 � � �

6 V ðn4; xðn4Þ; yðn4ÞÞ � c
1

2
d1

� 	
ðm � 1Þd1

2L

6 bðMÞ � c
1

2
d

� 	
m � 1

2L
d1 < 0:

ð3:12Þ

Then

kx0 þ y0k < d implies kxðtÞ þ yðtÞk < �; tP t0 þ ðn� 1Þ½T1ð�Þ þ T2ð�Þ�:

This completes the proof of Theorem 4. �
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